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Abstract. There has been a significant progress in ab initio approaches to the structure of light nuclei. Starting from realistic
two- and three-nucleon interactions the ab initio no-core shell model (NCSM) can predict low-lying levels in p-shell nuclei. It
is a challenging task to extend ab initio methods to describe nuclear reactions. In this contribution, we present a brief overview
of the NCSM with examples of recent applications as well as the first steps taken toward nuclear reaction applications. In
particular, we discuss cross section calculations of p+6Li and 6He+p scattering as well as a calculation of the astrophysically
important 7Be(p,γ)8B S-factor.
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1. INTRODUCTION

Various methods can be used to solve systems of three or four nucleons interacting by realistic interactions [1]. For
A

� 4 systems, a prominent approach has been the Green’s function Monte Carlo (GFMC) method [2]. An alternative,
and complementary, approach is the no-core shell model (NCSM) [3, 4, 5, 6, 7, 8, 9, 10]. It considers light nuclei
as systems of A nucleons interacting by realistic inter-nucleon forces. The calculations are performed using a large
but finite harmonic-oscillator (HO) basis. Due to the basis truncation, it is necessary to derive an effective interaction
from the underlying inter-nucleon interaction. The effective interaction contains, in general, up to A-body components
even if the underlying interaction had, e.g. only two-body terms. In practice, the effective interaction is derived in a
sub-cluster approximation retaining just two- or three-body terms. A crucial feature of the method is its convergence
to exact solution with the basis size increase and/or the effective interaction clustering increase.

Among successes of the NCSM approach was the first published result of the binding energy of4He with the CD-
Bonn NN potential [6], and the first observation of incorrect ground-state spin in10B when realistic nucleon-nucleon
interactions are employed [9, 11]. This last result is a new example, in addition to the under binding problem, for the
need of realistic three-nucleon forces.

In this paper, we give a short overview of the NCSM theory in Sect. 2 with examples of recent results. In particular,
we emphasize recent efforts to apply the nuclear structure information obtained within the NCSM to describe nuclear
reactions. A derivation of the translationally invariant density from the NCSM wave functions is discussed in Sect. 3.
The obtained density then serves as an input for the folding approaches to optical potentials used in the direct reaction
coupled channel calculations. As examples of the application, the 6Li and 6He scattering on protons is investigated.
Calculation of cluster form factors and spectroscopic factors is discussed in Sect. 4. In Sect. 5, we present preliminary
results of the 7Be(p,γ)8B S-factor calculation from NCSM wave functions. Conclusions are given in Sect. 6.

2. AB INITIO NO-CORE SHELL MODEL

We consider a system of A point-like nonrelativistic nucleons that interact by realistic two- or two- plus three-nucleon
interactions. As the simpler case when just the two-nucleon interaction is considered was discussed in many papers,
see e.g. Ref. [8], we focus here on the more general case when both two- and three-nucleon interactions (TNI) are
included. The starting Hamiltonian is then

HA � 1
A ∑

i � j

�	�
pi 
 �

p j � 2

2m
� A

∑
i � j

VNN 
 i j
� A

∑
i � j � k

VNNN 
 i jk � (1)



where m is the nucleon mass, VNN 
 i j the NN interaction, VNNN 
 i jk the three-nucleon interaction. In the NCSM, we
employ a large but finite HO basis. Due to properties of the realistic nuclear interaction in Eq. (1), we must derive
an effective interaction appropriate for the basis truncation. To facilitate the derivation of the effective interaction,
we modify the Hamiltonian (1) by adding to it the center-of-mass (CM) HO Hamiltonian HCM � TCM

�
UCM, where

UCM � 1
2 AmΩ2

�
R2,

�
R � 1

A ∑A
i � 1

�
ri. The effect of the HO CM Hamiltonian will later be subtracted out in the final many-

body calculation. Due to the translational invariance of the Hamiltonian (1) the HO CM Hamiltonian has in fact no
effect on the intrinsic properties of the system in the infinite basis space. The modified Hamiltonian can be cast into
the form

HΩ
A � HA

�
HCM �

A

∑
i � 1

hi
� A

∑
i � j

V Ω 
 A
i j

� A

∑
i � j � k

VNNN 
 i jk �
A

∑
i � 1

� �
p2

i

2m
� 1

2
mΩ2 �r2

i �
� A

∑
i � j

�
VNN 
 i j 
 mΩ2

2A

� �
ri 
 �

r j � 2 � � A

∑
i � j � k

VNNN 
 i jk � (2)

Next we divide the A-nucleon infinite HO basis space into the finite active space (P) comprising of all states of up to
Nmax HO excitations above the unperturbed ground state and the excluded space (Q � 1 
 P). The basic idea of the
NCSM approach is to apply a unitary transformation on the Hamiltonian (2), e � SHΩ

A eS such that Qe � SHΩ
A eSP � 0.

If such a transformation is found, the effective Hamiltonian that exactly reproduces a subset of eigenstates of the
full space Hamiltonian is given by Heff � Pe � SHΩ

A eSP. This effective Hamiltonian contains up to A-body terms and
to construct it is essentially as difficult as to solve the full problem. Therefore, we apply this basic idea on a sub-
cluster level. When a genuine TNI is considered, the simplest approximation is a three-body effective interaction
approximation. The NCSM calculation is then performed with the following four steps:

(i) We solve a three-nucleon system for all possible three-nucleon channels with the Hamiltonian H Ω
A ,i.e., using h1

�
h2

�
h3

�
VΩ 
 A

12
�

V Ω 
 A
13

�
VΩ 
 A

23
�

VNNN 
 123. It is necessary to separate the three-body effective interaction contributions
from the TNI and from the two-nucleon interaction. Therefore, we need to find three-nucleon solutions for the
Hamiltonian with and without the VNNN 
 123 TNI term. The three-nucleon solutions are obtained by procedures
described in Refs. [7] (without TNI) and [12] (with TNI).

(ii) We construct the unitary transformation corresponding to the choice of the active basis space P from the three-
nucleon solutions using the Lee-Suzuki procedure [13, 14]. The three-body effective interaction is then obtained as
V NN � NNN

3eff 
 123 � P � e � SNN � NNN
�
h1

�
h2

�
h3

�
VΩ 
 A

12
�

VΩ 
 A
13

�
VΩ 
 A

23
�

VNNN 
 123 � eSNN � NNN 
 �
h1

�
h2

�
h3 �	� P and V NN

3eff 
 123 �
P � e � SNN

�
h1

�
h2

�
h3

�
V Ω 
 A

12
�

V Ω 
 A
13

�
V Ω 
 A

23 � eSNN 
 �
h1

�
h2

�
h3 �	� P. The three-body effective interaction contribution

from the TNI is then defined as VNNN
3eff 
 123 
 V NN � NNN

3eff 
 123 
 VNN
3eff 
 123.

(iii) As the three-body effective interactions are derived in the Jacobi-coordinate HO basis but the A-nucleon
calculations will be performed in a Cartesian-coordinate single-particle Slater-determinant m-scheme basis, we need
to perform a suitable transformation of the interactions. This transformation is a generalization of the well-known
transformation on the two-body level that depends on HO Brody-Moshinsky brackets.

(iv) We solve the Schrödinger equation for the A nucleon system using the Hamiltonian H Ω
A 
 eff � ∑A

i � 1 hi
�

1
A � 2 ∑A

i � j � k V NN
3eff 
 i jk

� ∑A
i � j � k V NNN

3eff 
 i jk, where the 1
A � 2 factor takes care of overcounting the contribution from the two-

nucleon interaction. At this point we also subtract the HCM. The A nucleon calculation is then performed using a shell
model code generalized to handle three-body interactions.

An interesting example that demonstrates the importance of the TNI is the ground-state spin inversion in 10B. The
ground state of 10B is JπT � 3 � 0. Calculations with the high-quality NN potenatials, however, predict a 1 � 0 ground
state. [2, 9, 11] By including the Tucson-Melbourne TM � TNI, the problem is resolved, see Fig. 1. In the figure, three
parameter sets denoted as 81, 93 and 99 are considered for the TM � TNI. All give similar results, dramatically different
compared to the calculation with only the two-nucleon potential.

3. TRANSLATIONALLY INVARIANT DENSITY AND JLM OPTICAL POTENTIAL

In general, it is a challenging task to extend the ab initio methods to describe nuclear reactions. Concerning direct
reactions, in particular the nucleon-nucleus elastic and inelastic scattering, a first and straightforward application of the
NCSM is a semi-microscopic approach, e.g. the Jeukenne-Lejeune-Mahaux (JLM) [15], to construct optical potentials
from the nuclear densities obtained in the NCSM. Eventually, these optical potentials can be used in coupled channels



FIGURE 1. Excitation spectra of 10B obtained using the AV8 � NN interactions and AV8 � +TM � interactions, respectively, are
compared to experiment. Three parameter sets denoted as 81, 93 and 99 are considered for the TM � TNI. The 4h̄Ω basis space and
the h̄Ω � 15 MeV HO frequency were employed.

calculations by employing standard codes, e.g. Fresco [16]. To fully utilize NCSM nuclear structure for this purpose,
the spurious CM contribution must be removed from the density.

The nuclear density operator is defined as [17]

ρop
� �
r � �

A

∑
i � 1

δ
� �
r 
 �

ri � �
A

∑
i � 1

δ
�
r 
 ri �
rri

∑
m

Ylm
�
r̂i � Y �

lm
�
r̂ � � (3)

The physical density should depend on the coordinate measured from the CM of the nucleus,
�
r 


�
R. Using the

transformation properties of the HO wave functions, it is possible to relate the physical density to the standard one-body
density matrix elements (OBDME) computed in shell model codes from eigenstates obtained in the Slater determinant
basis. The final expression is [18]�

Aλ f J f M f � ρop
� �
r 


�
R � � AλiJiMi � � � A

A � 1 � 3 � 2 1
Ĵ f

∑
�
JiMiKk � J f M f � Y �

Kk

����
r 


�
R �	 Rnl

��
 A
A � 1 � �r 


�
R � � Rn � l � �

 A

A � 1 � �r 

�
R � � � 
 1 � K l̂ l̂ � � l0l � 0 � K0 �

l̂1 l̂2
�
l10l20 � K0 �

�
MK � � 1

nln � l � 
 n1l1n2l2	 �
l1

1
2 j1 ���YK ��� l2 1

2 j2 � � 1
K̂ SD

�
Aλ f J f ��� � a†

n1l1 j1
ãn2l2 j2 ��� K � ��� AλiJi � SD � (4)

where the sum is restricted to both l
�

l � � K and l1
�

l2
�

K even. The λi and λ f are the additional quantum numbers
that classify the initial and final state, respectively. The matrix MK is defined as

�
MK � n1l1n2l2 
 nln � l � � ∑

N1L1

� 
 1 � l � l � � K � L1 � l1 L1 l
l � K l2 � l̂ l̂ �	 �

nl00l � N1L1n1l1l � 1
A � 1

�
n � l � 00l � � N1L1n2l2l � � 1

A � 1
� (5)

As an illustration of the significance of the spurious CM removal, we calculated the 6He physical (4) and the
shell-model densities SD

�
Aλ f J f M f � ρop

� �
r � � AλiJiMi � SD using wave functions obtained in Ref. [19]. We note that the

relationship between the Jacobi coordinate eigenstates appearing in Eq. (4) and the SD eigenstates is� �
r1 � � � �rA � AλJM � SD � � �

ξ1 � � � �ξA � 1 � AλJM � ϕ000
���

A
�
R � � (6)

In Fig. 2, the proton and the neutron monopole ground state densities are shown. A 10 h̄Ω basis space and the HO
frequency of h̄Ω � 13 MeV was used. The two-body effective interaction was derived from the CD-Bonn NN potential.
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FIGURE 2. 6He proton and neutron monopole ground state densities obtained in the 10h̄Ω basis space and the HO frequency of
h̄Ω � 13 MeV. The NCSM two-body effective interaction was derived from the CD-Bonn NN potential. The full lines correspond
to the physical densities calculated according to Eq. (4) while the dashed lines correspond to the shell-model densities that contain
the spurious center-of-mass contribution.

The full lines correspond to the physical densities calculated according to Eq. (4) while the dashed lines correspond
to the shell-model densities that contain the spurious CM contribution. Obviously, the same OBDME were employed
in both calculations. The normalization of the densities in Fig. 2 is 4π � drr2ρK � 0 
 p � n � � r � � Z

�
N � with p, n refers to

the proton and neutron, respectively, and ρK � 0
�
r � � 1

4π � dr̂
�
AλJM � ρop

� �
r � � AλJM � . Not surprisingly, a particularly

significant impact of the exact removal of the spurious CM motion is then found for the spin-orbit part of the optical
potential proportional to the derivative of the nuclear density.

By multiplying the physical monopole densities by r2 and integrating we obtain the point-proton and point-neutron
rms radii 1.763 fm and 2.361 fm, respectively, identical to those calculated in Ref. [19] in a different way. Performing
the same integral using the shell-model densities gives incorrect, larger radii 1.976 fm and 2.524 fm, respectively.
The difference between the squares of the two sets of radii is equal to the mean value of the CM

�
R2. It should be

noted that a recent high-precision measurement of the 6He proton radius reported a point-proton radius of 1.912(18)
fm. [20] is larger than that we calculted in the 10 h̄Ω model space with the HO frequency h̄Ω � 13 MeV. A more
detailed investigation of the radius convergence is needed. For example, a new calculation in a larger space, 10 h̄Ω and
a different HO frequency h̄Ω � 11 MeV gives the point-proton radius 1.818 fm.

We performed differential cross sections calculations for the reactions p+6Li at 72 MeV [21] and 6He+p at 71
MeV/A [22]. Starting from the translationally invariant ground-state monopole densities obtained from 12 h̄Ω NCSM
calculations using the CD-Bonn NN potential, we constructed the JLM optical potential and the spin-orbit potential
proportional to the derivative of the density. We employed the JLM parametrization from Ref. [23] with the local
density approximation using the prescription with the mid-point interaction evaluation. Only the real part of the spin-
orbit interaction was retained. A simultaneous χ-square fit of the strength parameters of the real and imaginary central
potential and the spin-orbit potential was performed for the two reactions. Our results are compared to experimental
data in Fig. 3. The values of the fitted parameters are λV � 0 � 88 � λW � 0 � 92 and λso � 0 � 80.

4. CHANNEL CLUSTER FORM FACTOR CALCULATION

Detailed knowledge of nuclear structure is important for the description of low-energy nuclear reactions. As the first
step in the application of the NCSM to low-energy nuclear reactions, one needs to understand the cluster structure
of the eigenstates. That is, one needs to calculate the channel cluster form factors. Those can then, e.g., be integrated
to obtain the spectroscopic factors. Let’s consider a composite system of A nucleons, a projectile of a nucleons and a
target of A 
 a nucleons. All the nuclei are assumed to be described by eigenstates of the NCSM effective Hamiltonians
expanded in the HO basis with identical HO frequency and the same (for the eigenstates of the same parity) or differing
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FIGURE 3. Differential cross section for p+6Li at 72 MeV (left) and for 6He+p at 71 MeV/A (right). The NCSM densities
obtained in a 12h̄Ω calculation were used to generate the JLM optical potentials. Experimental data are from Refs. [21] and [22],
respectively.

by one unit of the HO excitation (for the eigenstates of opposite parity) definitions of the model space. We limit
ourselves to a � 4 projectiles. In such a case, the projectiles can be efficiently described by a Jacobi-coordinate HO
wave functions. The target and the composite system is assumed to be described by Slater determinant single-particle
HO basis wave functions which is in general more efficient for A

� 4. Let us introduce a projectile-target wave function� �
ξ1 � � � �ξA � a � 1η �A � aη̂A � a

�
ϑA � a � 1 � � � �ϑA � 1 � Φ � A � a 
 a � JM

αI1 
 β I2;sl ;δηA � a �
� ∑

�
I1M1I2M2 � sms � � smslml � JM � δ

�
ηA � a 
 η �A � a �
ηA � aη �A � a

Ylml

�
η̂A � a �	 � �

ξ1 � � � �ξA � a � 1 � A 
 aαI1M1 � � �ϑA � a � 1 � � � �ϑA � 1 � aβ I2M2 � � (7)

The calculation of the cluster form factor

gAλ JT
A � aαI1 
 aβ I2;sl

�
ηA � a � � �

AλJ � � Φ � A � a 
 a � J
αI1 
 β I2;sl ;δηA � a �

�
�

A!�
A 
 a � !a! ∑

n
Rnl

�
ηA � a � � AλJ � Φ � A � a 
 a � J

αI1 
 β I2;sl ;nl � � (8)

can then be done in two steps. First, using the relation (6) for both the composite and the target eigenstate and the HO
wave function transformations we obtain

SD
�
AλJ � � Φ � A � a 
 a � J

αI1 
 β I2;sl ;nl � SD � �
nl00l � 00nll � a

A � a

�
AλJ � � Φ � A � a 
 a � J

αI1 
 β I2;sl ;nl � � (9)

with a general HO bracket due to the CM motion. The nl in (8) and (9) refers to a replacement of δηA � a by the
HO Rnl

�
ηA � a � radial wave function. Second, we relate the SD overlap to a linear combination of matrix elements

of a creation operators between the target and the composite eigenstates SD
�
AλJ � a†

n1l1 j1 � � � a†
nala ja � A 
 aαI1 � SD. Such

matrix elements are easily calculated by shell model codes. To obtain the channel cluster form factor we use the second
equality in Eq. (8). The spectroscopic factor is obtained by integrating the square of the form factor.

As an example, we present results for the 7Li � 4He+t channel cluster form factors in Fig. 4. Apart from the large
overlap integrals and spectroscopic factors for the bound 3

2
�
1 and 1

2
�
1 states, we find these quantities to be large also

for the first excited 7
2
�
1 and the first excited 5

2
�
1 state. Both these states appear as resonances in the 4He+t cross

section. [24] The present results can be compared to the three-nucleon transfer calculations of Ref. [25] obtained
using the phenomeological Cohen-Kurath interaction. [26] The agreement for the lowest four states is quite good. For
the second excited 5

2
�
2 state, however, our spectroscopic factor is significantly smaller than the one obtained in Ref.
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2 � � 5
2 � � 7

2 � states with the 4He+3H as a function of separation
between the 4He and the triton. The CD-Bonn 2000 NN potential, the basis size of Nmax � 8 (for 7Li), Nmax � 10 (for 4He and 3H)
and the HO frequency of h̄Ω � 13 MeV were used.

[25]. The other system involving 7Li as the composite nucleus that we investigated is 6Li+n. As in the 7Li � 4He+t
case, we observe large overlap integrals and spectroscopic factors for the two bound states 3

2
�
1 and 1

2
�
1 . Contrary to the

7Li � 4He+t case, however, we find a large overlap integral and the spectroscopic factor for the 5
2
�
2 state. The lowest 7

2
�
1

and 5
2
�
1 states have negligible overlap integrals for the 6Li+n system. The large overlap integral and the spectroscopic

factor for the 5
2
�
2 state is consistent with the observed resonance in the 6Li+n cross section.

5. 7BE(P,γ)8B S-FACTOR FROM NCSM WAVE FUNCTIONS

The 7Be(p,γ)8B capture reaction serves as an important input for understanding the solar neutrino flux [27]. S-factor
of this reaction needs to be known with a precision of better than 9%. Current experimental uncertainties are around
20%. Many theoretical investigations were devoted to this reaction. Here we present a calculation for the S-factor
starting from the ab initio NCSM wave functions for 8B and 7Be. The NCSM calculations were performed using the
CD-Bonn NN potential in the model spaces up to 10 h̄Ω for both nuclei. The harmonic oscilator frequency h̄Ω � 12
MeV, which produces the ground-state energy minimum in the 10 h̄Ω space, was selected as the starting point also for
the present S-factor calculation. The ground-state wave functions for 8B and 7Be were utilized to calculate the cluster
form factors or overlap integrals that serve as the S-factor calculation input. The two most important channels are the
p-waves, l � 1, with the proton in the j � 3

�
2 and j � 1

�
2 states,

�
j �

�
l
� �

s � s � 1
�
2. In these channels, we obtain the

spectroscopic factors of 0 � 96 and 0 � 10, respectively. The dominant j � 3
�
2 overlap integral is presented in the left of

Fig. 5 by the full line. Despite the fact, that a very large basis was employed in the present calculation, it is aparent
that the overlap integral is nearly zero at about 10 fm. This is a consequence of the HO basis asymptotics. The proton
capture on 7Be to the weakly bound ground state of 8B associated dominantly by the E1 radiation is a peripheral
process. Consequently, the overlap integral with an incorrect asymptotic behavior cannot be used to calculate the
S-factor.

It is our expectation, however, that the interior part of the overlap integral as obtained from our large-basis NCSM
calculation is realistic. It is straightforward then to correct the asymptotic behavior of the overlap integral. We
performed a least-square fit of a Woods-Saxon potential solution to the interior of the NCSM overlap in the range
of 0 
 4 fm. The Woods-Saxon potential parameters were varied in the fit under the constrain that the experimental
separation energy of 7Be+p was reproduced. In this way we obtain a perfect fit to the interior of the overlap integral
and a correct asymptotic behavior at the same time. The resulting overlap is presented in Fig. 5 by the dashed line.
Eventually, we rescale the overlap to preserve the original NCSM spectroscopic factor. The same procedure is applied



0 1 2 3 4 5 6 7 8 9 10
r [fm]

0

0.1

0.2

0.3

0.4

0.5

cl
us

te
r 

fo
rm

 f
ac

to
r

NCSM l=1 j=3/2
WS fit  l=1 j=3/2

< 
8
B | 

7
Be+p >  rg(r)

0 1 2 3 4 5 6 7 8 9 10
r [fm]

0

0.05

0.1

0.15

0.2

cl
us

te
r 

fo
rm

 f
ac

to
r

NCSM l=1 j=1/2
WS fit  l=1 j=1/2

< 
8
B | 

7
Be+p >  rg(r)

FIGURE 5. Overlap integral, rg � r � , for the ground state of 8B with the ground state of 7Be plus proton as a function of separation
between the 7Be and the proton. Left (right), the p-wave channel with j � 3 � 2 ( j � 1 � 2) is shown. The full line represents the
NCSM result, while the dashed line represents a renormalized overlap obtained from a Woods-Saxon potential whose parameters
were fit to the NCSM overlap up to 4.0 fm under the constraint to reproduce the experimental separation energy.

to the other p-wave channel (right panel in Fig. 5). Obviously, the Woods-Saxon parameters obtained for the two
channels are different. The corrected overlap integrals then serve as the input for the S-factor calculation performed
as described in Ref. [28]. The scattering 7Be+p s- and d-wave states are obtained within the potential model approach
using a Woods-Saxon potential used in Ref. [29].

Our obtained S-factor is presented in Figs. 6 where contribution from the two partial waves are shown together with
the total result (left figure). It is interesting to note a good agreement of our calculated S-factor with the recent Seattle
direct measurement [30]. The sensitivity of the S-factor to the size of the NCSM basis is also presented in Figs. 6 (right
figure). The overlap integrals were obtained in 6, 8 and 10 h̄Ω calculations and independently corrected to insure the
proper asymptotic behavior. The same scattering states were used in all three cases. It is aparent that the sensitivity to
the basis change is rather moderate. We observe a small oscillation at this frequency ( h̄Ω � 12 MeV). More detailed
inverstigation of the basis size and the HO frequency sensitivity is under way.

6. CONCLUSION

Substantial progress has been made towards an exact description of nuclear structure. In this work, we described the
ab initio no-core shell model and recent results. In particular, we find that realistic NN interactions by themselves are
inadequate and that three-nucleon forces play an important role in determining nuclear properties. We are also in the
process of extending the no-core shell model into a formalism capable of providing a description of nuclear reactions.
Overall, the prospects are good that exact results for both structure and reactions for nuclei up to Oxygen utilizing the
fundamental forces between nucleons can be achieved in the near future.
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